Integral dari $$$\sec^{2}{\left(x y \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sec^{2}{\left(x y \right)}\, dx$$$.
Solusi
Misalkan $$$u=x y$$$.
Kemudian $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{y}$$$.
Integralnya menjadi
$${\color{red}{\int{\sec^{2}{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{y}$$$ dan $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\sec^{2}{\left(u \right)} d u}}{y}}}$$
Integral dari $$$\sec^{2}{\left(u \right)}$$$ adalah $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{y} = \frac{{\color{red}{\tan{\left(u \right)}}}}{y}$$
Ingat bahwa $$$u=x y$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{y} = \frac{\tan{\left({\color{red}{x y}} \right)}}{y}$$
Oleh karena itu,
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}$$
Tambahkan konstanta integrasi:
$$\int{\sec^{2}{\left(x y \right)} d x} = \frac{\tan{\left(x y \right)}}{y}+C$$
Jawaban
$$$\int \sec^{2}{\left(x y \right)}\, dx = \frac{\tan{\left(x y \right)}}{y} + C$$$A