Integraal van $$$\frac{1}{\sec{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{\sec{\left(x \right)}}\, dx$$$.
Oplossing
Herschrijf de integraand in termen van de cosinus:
$${\color{red}{\int{\frac{1}{\sec{\left(x \right)}} d x}}} = {\color{red}{\int{\cos{\left(x \right)} d x}}}$$
De integraal van de cosinus is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\cos{\left(x \right)} d x}}} = {\color{red}{\sin{\left(x \right)}}}$$
Dus,
$$\int{\frac{1}{\sec{\left(x \right)}} d x} = \sin{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{\sec{\left(x \right)}} d x} = \sin{\left(x \right)}+C$$
Antwoord
$$$\int \frac{1}{\sec{\left(x \right)}}\, dx = \sin{\left(x \right)} + C$$$A