Integral dari $$$\frac{1}{\sec{\left(x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sec{\left(x \right)}}\, dx$$$.
Solusi
Tulis ulang integran dalam bentuk kosinus:
$${\color{red}{\int{\frac{1}{\sec{\left(x \right)}} d x}}} = {\color{red}{\int{\cos{\left(x \right)} d x}}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\cos{\left(x \right)} d x}}} = {\color{red}{\sin{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{1}{\sec{\left(x \right)}} d x} = \sin{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sec{\left(x \right)}} d x} = \sin{\left(x \right)}+C$$
Jawaban
$$$\int \frac{1}{\sec{\left(x \right)}}\, dx = \sin{\left(x \right)} + C$$$A