Integraal van $$$\frac{1}{y^{2} + 1}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{y^{2} + 1}\, dy$$$.
Oplossing
De integraal van $$$\frac{1}{y^{2} + 1}$$$ is $$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}$$$:
$${\color{red}{\int{\frac{1}{y^{2} + 1} d y}}} = {\color{red}{\operatorname{atan}{\left(y \right)}}}$$
Dus,
$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}+C$$
Antwoord
$$$\int \frac{1}{y^{2} + 1}\, dy = \operatorname{atan}{\left(y \right)} + C$$$A
Please try a new game Rotatly