$$$\frac{1}{y^{2} + 1}$$$の積分
入力内容
$$$\int \frac{1}{y^{2} + 1}\, dy$$$ を求めよ。
解答
$$$\frac{1}{y^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}$$$ です:
$${\color{red}{\int{\frac{1}{y^{2} + 1} d y}}} = {\color{red}{\operatorname{atan}{\left(y \right)}}}$$
したがって、
$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}$$
積分定数を加える:
$$\int{\frac{1}{y^{2} + 1} d y} = \operatorname{atan}{\left(y \right)}+C$$
解答
$$$\int \frac{1}{y^{2} + 1}\, dy = \operatorname{atan}{\left(y \right)} + C$$$A
Please try a new game Rotatly