Integraal van $$$\cos{\left(2 x y \right)}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cos{\left(2 x y \right)}\, dx$$$.
Oplossing
Zij $$$u=2 x y$$$.
Dan $$$du=\left(2 x y\right)^{\prime }dx = 2 y dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2 y}$$$.
Dus,
$${\color{red}{\int{\cos{\left(2 x y \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2 y}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2 y}\right)}}$$
De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2 y} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2 y}$$
We herinneren eraan dat $$$u=2 x y$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{2 y} = \frac{\sin{\left({\color{red}{\left(2 x y\right)}} \right)}}{2 y}$$
Dus,
$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}$$
Voeg de integratieconstante toe:
$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}+C$$
Antwoord
$$$\int \cos{\left(2 x y \right)}\, dx = \frac{\sin{\left(2 x y \right)}}{2 y} + C$$$A