Integral of $$$\cos{\left(2 x y \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(2 x y \right)}\, dx$$$.
Solution
Let $$$u=2 x y$$$.
Then $$$du=\left(2 x y\right)^{\prime }dx = 2 y dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2 y}$$$.
Therefore,
$${\color{red}{\int{\cos{\left(2 x y \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2 y}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2 y}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2 y} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2 y}$$
Recall that $$$u=2 x y$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{2 y} = \frac{\sin{\left({\color{red}{\left(2 x y\right)}} \right)}}{2 y}$$
Therefore,
$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}$$
Add the constant of integration:
$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}+C$$
Answer
$$$\int \cos{\left(2 x y \right)}\, dx = \frac{\sin{\left(2 x y \right)}}{2 y} + C$$$A