Ολοκλήρωμα της $$$\cos{\left(2 x y \right)}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\cos{\left(2 x y \right)}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \cos{\left(2 x y \right)}\, dx$$$.

Λύση

Έστω $$$u=2 x y$$$.

Τότε $$$du=\left(2 x y\right)^{\prime }dx = 2 y dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2 y}$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{\cos{\left(2 x y \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2 y}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{2 y} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2 y}\right)}}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2 y} = \frac{{\color{red}{\sin{\left(u \right)}}}}{2 y}$$

Θυμηθείτε ότι $$$u=2 x y$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{2 y} = \frac{\sin{\left({\color{red}{\left(2 x y\right)}} \right)}}{2 y}$$

Επομένως,

$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\cos{\left(2 x y \right)} d x} = \frac{\sin{\left(2 x y \right)}}{2 y}+C$$

Απάντηση

$$$\int \cos{\left(2 x y \right)}\, dx = \frac{\sin{\left(2 x y \right)}}{2 y} + C$$$A


Please try a new game Rotatly