$$$7.5$$$을 분수로
사용자 입력
$$$7.5$$$을(를) 분수로 변환하세요.
풀이
모든 mixed number는 정수 부분과 진분수로 구성됩니다. 또한, decimal은 정수 부분과 소수 부분으로 구성됩니다.
대분수와 소수는 매우 비슷합니다: 같은 수를 나타낸다면 정수 부분은 같고, 우리가 원하는 것은 소수의 소수점 이하 부분을 대분수의 분수 부분으로 변환하는 것입니다.
이 소수는 정수부 $$$7$$$와 소수부 $$$0.5$$$로 구성됩니다.
따라서 정수부는 무시하고 소수부 $$$0.5$$$만 고려합니다.
모든 수는 분모가 $$$1$$$인 분수로 표현할 수 있음을 기억하세요.
우리의 경우, $$$0.5 = \frac{0.5}{1}$$$라고 쓸 수 있습니다.
소수 부분(소수점 오른쪽)에 $$$1$$$자리의 숫자가 있으므로, 정수를 얻기 위해 이 수에 $$$10^{1} = 10$$$를 곱해야 합니다.
이제 분수의 동치성을 이용하면 $$$\frac{0.5}{1} = \frac{0.5\cdot {\color{red}10}}{1\cdot {\color{red}10}} = \frac{5}{10}$$$라고 쓸 수 있습니다.
다음으로 분수를 약분해 보세요.
분자와 분모의 최대공약수가 $$$5$$$이므로, $$$\frac{5}{10} = \frac{1\cdot {\color{red}5}}{2\cdot {\color{red}5}}$$$라고 쓸 수 있습니다.
그리고 정수부도 잊지 마세요.
이 소수는 $$$7\frac{1}{2}$$$(대분수)가 됩니다.
마지막으로 대분수를 가분수로 변환합니다:
$$$7\frac{1}{2} = \frac{7\cdot {\color{red}2}}{1\cdot {\color{red}2}} + \frac{1}{2} = \frac{7\cdot 2 + 1}{2} = \frac{15}{2}$$$
정답
$$$7.5 = \frac{15}{2} = 7\frac{1}{2}$$$A