극한 계산기

극한을 단계별로 계산하세요

이 무료 계산기는 주어진 점(무한대 포함)에서 주어진 함수의 극한(양측 또는 편측, 좌극한과 우극한 포함)을 단계별 풀이와 함께 구해 줍니다.

극한(부정형 포함)을 다루기 위해 다양한 기법을 사용합니다: 극한의 법칙, 식의 변형 및 단순화, 로피탈의 정리, 분모 유리화, 자연로그를 취하기 등.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}}$$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$${\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{6}}}} = {\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{6}\right)}}}$$

For steps, see derivative calculator.

$${\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{6}\right)}}} = {\color{red}{\lim_{x \to \infty} \frac{e^{x}}{6 x^{5}}}}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{5}}$$$:

$${\color{red}{\lim_{x \to \infty} \frac{e^{x}}{6 x^{5}}}} = {\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{5}}}{6}\right)}}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{5}}}}}{6} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{5}\right)}}}}{6}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{5}\right)}}}}{6} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{5 x^{4}}}}}{6}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{4}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{5 x^{4}}}}}{6} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{4}}}{5}\right)}}}{6}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{4}}}}}{30} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{4}\right)}}}}{30}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{4}\right)}}}}{30} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{4 x^{3}}}}}{30}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{3}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{4 x^{3}}}}}{30} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{3}}}{4}\right)}}}{30}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{3}}}}}{120} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{3}\right)}}}}{120}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{3}\right)}}}}{120} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{3 x^{2}}}}}{120}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{2}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{3 x^{2}}}}}{120} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{2}}}{3}\right)}}}{120}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{2}}}}}{360} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{2}\right)}}}}{360}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{2}\right)}}}}{360} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{2 x}}}}{360}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{2 x}}}}{360} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x}}{2}\right)}}}{360}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x}}}}{720} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x\right)}}}}{720}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x\right)}}}}{720} = \frac{{\color{red}{\lim_{x \to \infty} e^{x}}}}{720}$$

The function grows without a bound:

$$\lim_{x \to \infty} e^{x} = \infty$$

Therefore,

$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}} = \infty$$

Answer: $$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}}=\infty$$$


Please try a new game Rotatly