극한 계산기

극한을 단계별로 계산하세요

이 무료 계산기는 주어진 점(무한대 포함)에서 주어진 함수의 극한(양측 또는 편측, 좌극한과 우극한 포함)을 단계별 풀이와 함께 구해 줍니다.

극한(부정형 포함)을 다루기 위해 다양한 기법을 사용합니다: 극한의 법칙, 식의 변형 및 단순화, 로피탈의 정리, 분모 유리화, 자연로그를 취하기 등.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}$$$

Rewrite:

$${\color{red}{\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}}} = {\color{red}{\lim_{x \to \infty}\left(1 + \frac{\sin{\left(x \right)}}{x}\right)}}$$

The limit of a sum/difference is the sum/difference of limits:

$${\color{red}{\lim_{x \to \infty}\left(1 + \frac{\sin{\left(x \right)}}{x}\right)}} = {\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x}\right)}}$$

The limit of a constant is equal to the constant:

$$\lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} + {\color{red}{\lim_{x \to \infty} 1}} = \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} + {\color{red}{1}}$$

Since the absolute value of the sine is is not greater than $$$1$$$, then:

$$- \frac{1}{x} \leq \frac{\sin{\left(x \right)}}{x} \leq \frac{1}{x}$$

Taking the limits, we have that:

$$\lim_{x \to \infty}\left(- \frac{1}{x}\right) \leq \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} \leq \lim_{x \to \infty} \frac{1}{x}$$

$$0 \leq \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} \leq 0$$

Since the limits are equal, then, by the Squeeze Theorem:

$$\lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x}=0$$

Therefore,

$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x} = 1$$

Answer: $$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}=1$$$


Please try a new game Rotatly