극한 계산기

극한을 단계별로 계산하세요

이 무료 계산기는 주어진 점(무한대 포함)에서 주어진 함수의 극한(양측 또는 편측, 좌극한과 우극한 포함)을 단계별 풀이와 함께 구해 줍니다.

극한(부정형 포함)을 다루기 위해 다양한 기법을 사용합니다: 극한의 법칙, 식의 변형 및 단순화, 로피탈의 정리, 분모 유리화, 자연로그를 취하기 등.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}$$$

Multiply and divide by $$$x$$$:

$${\color{red}{\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}}} = {\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}}$$

Divide:

$${\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}} = {\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$

The limit of the quotient is the quotient of limits:

$${\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}} = {\color{red}{\frac{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$

The limit of a sum/difference is the sum/difference of limits:

$$\frac{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a constant is equal to the constant:

$$\frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a quotient is the quotient of limits:

$$\frac{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

Constant divided by a very big number equals $$$0$$$:

$$\frac{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\left(0\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

Move the limit under the power:

$${\color{red}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}^{-1} = {\color{red}{\sqrt[3]{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}^{-1}$$

The limit of a sum/difference is the sum/difference of limits:

$$\frac{1}{\sqrt[3]{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}} = \frac{1}{\sqrt[3]{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^{3}}\right)}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{\lim_{x \to \infty} 1}}}} = \frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{1}}}}$$

The limit of a quotient is the quotient of limits:

$$\frac{1}{\sqrt[3]{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x^{3}}}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1}{\sqrt[3]{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x^{3}}}} = \frac{1}{\sqrt[3]{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x^{3}}}}$$

Constant divided by a very big number equals $$$0$$$:

$$\frac{1}{\sqrt[3]{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\left(0\right)}}}}$$

Therefore,

$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}} = 1$$

Answer: $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}=1$$$


Please try a new game Rotatly