$$$\sqrt[6]{x}$$$の積分
入力内容
$$$\int \sqrt[6]{x}\, dx$$$ を求めよ。
解答
$$$n=\frac{1}{6}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\sqrt[6]{x} d x}}}={\color{red}{\int{x^{\frac{1}{6}} d x}}}={\color{red}{\frac{x^{\frac{1}{6} + 1}}{\frac{1}{6} + 1}}}={\color{red}{\left(\frac{6 x^{\frac{7}{6}}}{7}\right)}}$$
したがって、
$$\int{\sqrt[6]{x} d x} = \frac{6 x^{\frac{7}{6}}}{7}$$
積分定数を加える:
$$\int{\sqrt[6]{x} d x} = \frac{6 x^{\frac{7}{6}}}{7}+C$$
解答
$$$\int \sqrt[6]{x}\, dx = \frac{6 x^{\frac{7}{6}}}{7} + C$$$A
Please try a new game Rotatly