Integral of $$$\sqrt[6]{x}$$$

The calculator will find the integral/antiderivative of $$$\sqrt[6]{x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sqrt[6]{x}\, dx$$$.

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{6}$$$:

$${\color{red}{\int{\sqrt[6]{x} d x}}}={\color{red}{\int{x^{\frac{1}{6}} d x}}}={\color{red}{\frac{x^{\frac{1}{6} + 1}}{\frac{1}{6} + 1}}}={\color{red}{\left(\frac{6 x^{\frac{7}{6}}}{7}\right)}}$$

Therefore,

$$\int{\sqrt[6]{x} d x} = \frac{6 x^{\frac{7}{6}}}{7}$$

Add the constant of integration:

$$\int{\sqrt[6]{x} d x} = \frac{6 x^{\frac{7}{6}}}{7}+C$$

Answer

$$$\int \sqrt[6]{x}\, dx = \frac{6 x^{\frac{7}{6}}}{7} + C$$$A


Please try a new game Rotatly