$$$\frac{1}{\sqrt{1 - x^{2}}}$$$の積分
入力内容
$$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx$$$ を求めよ。
解答
$$$\frac{1}{\sqrt{1 - x^{2}}}$$$ の不定積分は $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$ です:
$${\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\operatorname{asin}{\left(x \right)}}}$$
したがって、
$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$
積分定数を加える:
$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}+C$$
解答
$$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx = \operatorname{asin}{\left(x \right)} + C$$$A
Please try a new game Rotatly