Integral dari $$$\frac{1}{\sqrt{1 - x^{2}}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx$$$.
Solusi
Integral dari $$$\frac{1}{\sqrt{1 - x^{2}}}$$$ adalah $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\operatorname{asin}{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}+C$$
Jawaban
$$$\int \frac{1}{\sqrt{1 - x^{2}}}\, dx = \operatorname{asin}{\left(x \right)} + C$$$A