$$$x \ln\left(x\right)$$$の導関数

この計算機は、手順を示しながら $$$x \ln\left(x\right)$$$ の導関数を求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dx} \left(x \ln\left(x\right)\right)$$$ を求めよ。

解答

積の微分法 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \ln\left(x\right)$$$ に適用する:

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

自然対数の導関数は $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1 = \ln\left(x\right) {\color{red}\left(1\right)} + 1$$

したがって、$$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$

解答

$$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$A


Please try a new game Rotatly