$$$x \ln\left(x\right)$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(x \ln\left(x\right)\right)$$$을(를) 구하시오.
풀이
$$$f{\left(x \right)} = x$$$와 $$$g{\left(x \right)} = \ln\left(x\right)$$$에 대해 곱의 미분법칙 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을 적용하십시오:
$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$자연로그 함수의 도함수는 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)$$멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$을 $$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1 = \ln\left(x\right) {\color{red}\left(1\right)} + 1$$따라서, $$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$.
정답
$$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$A
Please try a new game Rotatly