Integral dari $$$\sec{\left(\theta \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sec{\left(\theta \right)}\, dx$$$.
Solusi
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=\sec{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec{\left(\theta \right)} d x}}} = {\color{red}{x \sec{\left(\theta \right)}}}$$
Oleh karena itu,
$$\int{\sec{\left(\theta \right)} d x} = x \sec{\left(\theta \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sec{\left(\theta \right)} d x} = x \sec{\left(\theta \right)}+C$$
Jawaban
$$$\int \sec{\left(\theta \right)}\, dx = x \sec{\left(\theta \right)} + C$$$A
Please try a new game Rotatly