Integral of $$$\sec{\left(\theta \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec{\left(\theta \right)}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\sec{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec{\left(\theta \right)} d x}}} = {\color{red}{x \sec{\left(\theta \right)}}}$$
Therefore,
$$\int{\sec{\left(\theta \right)} d x} = x \sec{\left(\theta \right)}$$
Add the constant of integration:
$$\int{\sec{\left(\theta \right)} d x} = x \sec{\left(\theta \right)}+C$$
Answer
$$$\int \sec{\left(\theta \right)}\, dx = x \sec{\left(\theta \right)} + C$$$A
Please try a new game Rotatly