Intégrale de $$$5 e^{- x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 5 e^{- x^{2}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=5$$$ et $$$f{\left(x \right)} = e^{- x^{2}}$$$ :
$${\color{red}{\int{5 e^{- x^{2}} d x}}} = {\color{red}{\left(5 \int{e^{- x^{2}} d x}\right)}}$$
Cette intégrale (Fonction d'erreur) n’admet pas de forme fermée :
$$5 {\color{red}{\int{e^{- x^{2}} d x}}} = 5 {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$
Par conséquent,
$$\int{5 e^{- x^{2}} d x} = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{5 e^{- x^{2}} d x} = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}+C$$
Réponse
$$$\int 5 e^{- x^{2}}\, dx = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2} + C$$$A