$$$5 e^{- x^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 5 e^{- x^{2}}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=5$$$ ve $$$f{\left(x \right)} = e^{- x^{2}}$$$ ile uygula:
$${\color{red}{\int{5 e^{- x^{2}} d x}}} = {\color{red}{\left(5 \int{e^{- x^{2}} d x}\right)}}$$
Bu integralin (Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:
$$5 {\color{red}{\int{e^{- x^{2}} d x}}} = 5 {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}$$
Dolayısıyla,
$$\int{5 e^{- x^{2}} d x} = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{5 e^{- x^{2}} d x} = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}+C$$
Cevap
$$$\int 5 e^{- x^{2}}\, dx = \frac{5 \sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2} + C$$$A