Funktion $$$e^{x} \sin{\left(e^{x} \right)}$$$ integraali

Laskin löytää funktion $$$e^{x} \sin{\left(e^{x} \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int e^{x} \sin{\left(e^{x} \right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=e^{x}$$$.

Tällöin $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$e^{x} dx = du$$$.

Näin ollen,

$${\color{red}{\int{e^{x} \sin{\left(e^{x} \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$

Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Muista, että $$$u=e^{x}$$$:

$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{e^{x}}} \right)}$$

Näin ollen,

$$\int{e^{x} \sin{\left(e^{x} \right)} d x} = - \cos{\left(e^{x} \right)}$$

Lisää integrointivakio:

$$\int{e^{x} \sin{\left(e^{x} \right)} d x} = - \cos{\left(e^{x} \right)}+C$$

Vastaus

$$$\int e^{x} \sin{\left(e^{x} \right)}\, dx = - \cos{\left(e^{x} \right)} + C$$$A


Please try a new game Rotatly