Integral of $$$e^{x} \sin{\left(e^{x} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{x} \sin{\left(e^{x} \right)}\, dx$$$.
Solution
Let $$$u=e^{x}$$$.
Then $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (steps can be seen »), and we have that $$$e^{x} dx = du$$$.
Thus,
$${\color{red}{\int{e^{x} \sin{\left(e^{x} \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recall that $$$u=e^{x}$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{e^{x}}} \right)}$$
Therefore,
$$\int{e^{x} \sin{\left(e^{x} \right)} d x} = - \cos{\left(e^{x} \right)}$$
Add the constant of integration:
$$\int{e^{x} \sin{\left(e^{x} \right)} d x} = - \cos{\left(e^{x} \right)}+C$$
Answer
$$$\int e^{x} \sin{\left(e^{x} \right)}\, dx = - \cos{\left(e^{x} \right)} + C$$$A