Integraali $$$y e^{x}$$$:stä muuttujan $$$y$$$ suhteen

Laskin löytää funktion $$$y e^{x}$$$ integraalin/kantafunktion muuttujan $$$y$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int y e^{x}\, dy$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ käyttäen $$$c=e^{x}$$$ ja $$$f{\left(y \right)} = y$$$:

$${\color{red}{\int{y e^{x} d y}}} = {\color{red}{e^{x} \int{y d y}}}$$

Sovella potenssisääntöä $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$e^{x} {\color{red}{\int{y d y}}}=e^{x} {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=e^{x} {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$

Näin ollen,

$$\int{y e^{x} d y} = \frac{y^{2} e^{x}}{2}$$

Lisää integrointivakio:

$$\int{y e^{x} d y} = \frac{y^{2} e^{x}}{2}+C$$

Vastaus

$$$\int y e^{x}\, dy = \frac{y^{2} e^{x}}{2} + C$$$A


Please try a new game Rotatly