Integrale di $$$y e^{x}$$$ rispetto a $$$y$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int y e^{x}\, dy$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=e^{x}$$$ e $$$f{\left(y \right)} = y$$$:
$${\color{red}{\int{y e^{x} d y}}} = {\color{red}{e^{x} \int{y d y}}}$$
Applica la regola della potenza $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$e^{x} {\color{red}{\int{y d y}}}=e^{x} {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=e^{x} {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$
Pertanto,
$$\int{y e^{x} d y} = \frac{y^{2} e^{x}}{2}$$
Aggiungi la costante di integrazione:
$$\int{y e^{x} d y} = \frac{y^{2} e^{x}}{2}+C$$
Risposta
$$$\int y e^{x}\, dy = \frac{y^{2} e^{x}}{2} + C$$$A