Funktion $$$e^{- \frac{1}{x}}$$$ integraali

Laskin löytää funktion $$$e^{- \frac{1}{x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int e^{- \frac{1}{x}}\, dx$$$.

Ratkaisu

Integraalin $$$\int{e^{- \frac{1}{x}} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=e^{- \frac{1}{x}}$$$ ja $$$\operatorname{dv}=dx$$$.

Tällöin $$$\operatorname{du}=\left(e^{- \frac{1}{x}}\right)^{\prime }dx=\frac{e^{- \frac{1}{x}}}{x^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$${\color{red}{\int{e^{- \frac{1}{x}} d x}}}={\color{red}{\left(e^{- \frac{1}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{1}{x}}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{1}{x}} - \int{\frac{e^{- \frac{1}{x}}}{x} d x}\right)}}$$

Olkoon $$$u=- \frac{1}{x}$$$.

Tällöin $$$du=\left(- \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x^{2}} = du$$$.

Näin ollen,

$$x e^{- \frac{1}{x}} - {\color{red}{\int{\frac{e^{- \frac{1}{x}}}{x} d x}}} = x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:

$$x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{1}{x}} - {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$

Tällä integraalilla (Eksponentti-integraali) ei ole suljettua muotoa:

$$x e^{- \frac{1}{x}} + {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{1}{x}} + {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$

Muista, että $$$u=- \frac{1}{x}$$$:

$$x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{\left(- \frac{1}{x}\right)}} \right)}$$

Näin ollen,

$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}$$

Lisää integrointivakio:

$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}+C$$

Vastaus

$$$\int e^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}\right) + C$$$A


Please try a new game Rotatly