$$$e^{- \frac{1}{x}}$$$ 的積分
您的輸入
求$$$\int e^{- \frac{1}{x}}\, dx$$$。
解答
對於積分 $$$\int{e^{- \frac{1}{x}} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=e^{- \frac{1}{x}}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(e^{- \frac{1}{x}}\right)^{\prime }dx=\frac{e^{- \frac{1}{x}}}{x^{2}} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
因此,
$${\color{red}{\int{e^{- \frac{1}{x}} d x}}}={\color{red}{\left(e^{- \frac{1}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{1}{x}}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{1}{x}} - \int{\frac{e^{- \frac{1}{x}}}{x} d x}\right)}}$$
令 $$$u=- \frac{1}{x}$$$。
則 $$$du=\left(- \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (步驟見»),並可得 $$$\frac{dx}{x^{2}} = du$$$。
該積分變為
$$x e^{- \frac{1}{x}} - {\color{red}{\int{\frac{e^{- \frac{1}{x}}}{x} d x}}} = x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:
$$x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{1}{x}} - {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
此積分(指數積分)不存在閉式表示:
$$x e^{- \frac{1}{x}} + {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{1}{x}} + {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
回顧一下 $$$u=- \frac{1}{x}$$$:
$$x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{\left(- \frac{1}{x}\right)}} \right)}$$
因此,
$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}$$
加上積分常數:
$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}+C$$
答案
$$$\int e^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}\right) + C$$$A