$$$e^{- \frac{1}{x}}$$$の積分
入力内容
$$$\int e^{- \frac{1}{x}}\, dx$$$ を求めよ。
解答
積分 $$$\int{e^{- \frac{1}{x}} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=e^{- \frac{1}{x}}$$$ と $$$\operatorname{dv}=dx$$$ とする。
したがって、$$$\operatorname{du}=\left(e^{- \frac{1}{x}}\right)^{\prime }dx=\frac{e^{- \frac{1}{x}}}{x^{2}} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{1 d x}=x$$$(手順は»を参照)。
したがって、
$${\color{red}{\int{e^{- \frac{1}{x}} d x}}}={\color{red}{\left(e^{- \frac{1}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{1}{x}}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{1}{x}} - \int{\frac{e^{- \frac{1}{x}}}{x} d x}\right)}}$$
$$$u=- \frac{1}{x}$$$ とする。
すると $$$du=\left(- \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$(手順は»で確認できます)、$$$\frac{dx}{x^{2}} = du$$$ となります。
この積分は次のように書き換えられる
$$x e^{- \frac{1}{x}} - {\color{red}{\int{\frac{e^{- \frac{1}{x}}}{x} d x}}} = x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-1$$$ と $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$ に対して適用する:
$$x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{1}{x}} - {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
この積分(指数積分)には閉形式はありません:
$$x e^{- \frac{1}{x}} + {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{1}{x}} + {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
次のことを思い出してください $$$u=- \frac{1}{x}$$$:
$$x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{\left(- \frac{1}{x}\right)}} \right)}$$
したがって、
$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}$$
積分定数を加える:
$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}+C$$
解答
$$$\int e^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}\right) + C$$$A