Integral of $$$e^{- \frac{1}{x}}$$$

The calculator will find the integral/antiderivative of $$$e^{- \frac{1}{x}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int e^{- \frac{1}{x}}\, dx$$$.

Solution

For the integral $$$\int{e^{- \frac{1}{x}} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=e^{- \frac{1}{x}}$$$ and $$$\operatorname{dv}=dx$$$.

Then $$$\operatorname{du}=\left(e^{- \frac{1}{x}}\right)^{\prime }dx=\frac{e^{- \frac{1}{x}}}{x^{2}} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).

The integral becomes

$${\color{red}{\int{e^{- \frac{1}{x}} d x}}}={\color{red}{\left(e^{- \frac{1}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{1}{x}}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{1}{x}} - \int{\frac{e^{- \frac{1}{x}}}{x} d x}\right)}}$$

Let $$$u=- \frac{1}{x}$$$.

Then $$$du=\left(- \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x^{2}} = du$$$.

The integral can be rewritten as

$$x e^{- \frac{1}{x}} - {\color{red}{\int{\frac{e^{- \frac{1}{x}}}{x} d x}}} = x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:

$$x e^{- \frac{1}{x}} - {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{1}{x}} - {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$

This integral (Exponential Integral) does not have a closed form:

$$x e^{- \frac{1}{x}} + {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{1}{x}} + {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$

Recall that $$$u=- \frac{1}{x}$$$:

$$x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left({\color{red}{\left(- \frac{1}{x}\right)}} \right)}$$

Therefore,

$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}$$

Add the constant of integration:

$$\int{e^{- \frac{1}{x}} d x} = x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}+C$$

Answer

$$$\int e^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(- \frac{1}{x} \right)}\right) + C$$$A


Please try a new game Rotatly