Funktion $$$960 e^{\frac{x}{120}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int 960 e^{\frac{x}{120}}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=960$$$ ja $$$f{\left(x \right)} = e^{\frac{x}{120}}$$$:
$${\color{red}{\int{960 e^{\frac{x}{120}} d x}}} = {\color{red}{\left(960 \int{e^{\frac{x}{120}} d x}\right)}}$$
Olkoon $$$u=\frac{x}{120}$$$.
Tällöin $$$du=\left(\frac{x}{120}\right)^{\prime }dx = \frac{dx}{120}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = 120 du$$$.
Siis,
$$960 {\color{red}{\int{e^{\frac{x}{120}} d x}}} = 960 {\color{red}{\int{120 e^{u} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=120$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$$960 {\color{red}{\int{120 e^{u} d u}}} = 960 {\color{red}{\left(120 \int{e^{u} d u}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$115200 {\color{red}{\int{e^{u} d u}}} = 115200 {\color{red}{e^{u}}}$$
Muista, että $$$u=\frac{x}{120}$$$:
$$115200 e^{{\color{red}{u}}} = 115200 e^{{\color{red}{\left(\frac{x}{120}\right)}}}$$
Näin ollen,
$$\int{960 e^{\frac{x}{120}} d x} = 115200 e^{\frac{x}{120}}$$
Lisää integrointivakio:
$$\int{960 e^{\frac{x}{120}} d x} = 115200 e^{\frac{x}{120}}+C$$
Vastaus
$$$\int 960 e^{\frac{x}{120}}\, dx = 115200 e^{\frac{x}{120}} + C$$$A