$$$960 e^{\frac{x}{120}}$$$ 的积分
您的输入
求$$$\int 960 e^{\frac{x}{120}}\, dx$$$。
解答
对 $$$c=960$$$ 和 $$$f{\left(x \right)} = e^{\frac{x}{120}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{960 e^{\frac{x}{120}} d x}}} = {\color{red}{\left(960 \int{e^{\frac{x}{120}} d x}\right)}}$$
设$$$u=\frac{x}{120}$$$。
则$$$du=\left(\frac{x}{120}\right)^{\prime }dx = \frac{dx}{120}$$$ (步骤见»),并有$$$dx = 120 du$$$。
所以,
$$960 {\color{red}{\int{e^{\frac{x}{120}} d x}}} = 960 {\color{red}{\int{120 e^{u} d u}}}$$
对 $$$c=120$$$ 和 $$$f{\left(u \right)} = e^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$960 {\color{red}{\int{120 e^{u} d u}}} = 960 {\color{red}{\left(120 \int{e^{u} d u}\right)}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$$115200 {\color{red}{\int{e^{u} d u}}} = 115200 {\color{red}{e^{u}}}$$
回忆一下 $$$u=\frac{x}{120}$$$:
$$115200 e^{{\color{red}{u}}} = 115200 e^{{\color{red}{\left(\frac{x}{120}\right)}}}$$
因此,
$$\int{960 e^{\frac{x}{120}} d x} = 115200 e^{\frac{x}{120}}$$
加上积分常数:
$$\int{960 e^{\frac{x}{120}} d x} = 115200 e^{\frac{x}{120}}+C$$
答案
$$$\int 960 e^{\frac{x}{120}}\, dx = 115200 e^{\frac{x}{120}} + C$$$A