Funktion $$$\frac{2}{x - 2}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{2}{x - 2}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$${\color{red}{\int{\frac{2}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
Olkoon $$$u=x - 2$$$.
Tällöin $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Integraali voidaan kirjoittaa muotoon
$$2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=x - 2$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Näin ollen,
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Vastaus
$$$\int \frac{2}{x - 2}\, dx = 2 \ln\left(\left|{x - 2}\right|\right) + C$$$A