Integral of $$$\frac{2}{x - 2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{2}{x - 2}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$${\color{red}{\int{\frac{2}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
Let $$$u=x - 2$$$.
Then $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$$2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 2$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Answer
$$$\int \frac{2}{x - 2}\, dx = 2 \ln\left(\left|{x - 2}\right|\right) + C$$$A