$$$\frac{2}{x - 2}$$$ 的積分
您的輸入
求$$$\int \frac{2}{x - 2}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$${\color{red}{\int{\frac{2}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
令 $$$u=x - 2$$$。
則 $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分變為
$$2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=x - 2$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
因此,
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}$$
加上積分常數:
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
答案
$$$\int \frac{2}{x - 2}\, dx = 2 \ln\left(\left|{x - 2}\right|\right) + C$$$A