Integral dari $$$\frac{2}{x - 2}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{2}{x - 2}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$${\color{red}{\int{\frac{2}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
Misalkan $$$u=x - 2$$$.
Kemudian $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.
Jadi,
$$2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=x - 2$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Jawaban
$$$\int \frac{2}{x - 2}\, dx = 2 \ln\left(\left|{x - 2}\right|\right) + C$$$A