$$$\frac{2}{x - 2}$$$ 的积分
您的输入
求$$$\int \frac{2}{x - 2}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x - 2} d x}\right)}}$$
设$$$u=x - 2$$$。
则$$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
该积分可以改写为
$$2 {\color{red}{\int{\frac{1}{x - 2} d x}}} = 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 2$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
因此,
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}$$
加上积分常数:
$$\int{\frac{2}{x - 2} d x} = 2 \ln{\left(\left|{x - 2}\right| \right)}+C$$
答案
$$$\int \frac{2}{x - 2}\, dx = 2 \ln\left(\left|{x - 2}\right|\right) + C$$$A