Funktion $$$1 - \sec^{2}{\left(x \right)}$$$ integraali

Laskin löytää funktion $$$1 - \sec^{2}{\left(x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:

$$- \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{x}}$$

Funktion $$$\sec^{2}{\left(x \right)}$$$ integraali on $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$x - {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = x - {\color{red}{\tan{\left(x \right)}}}$$

Näin ollen,

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$

Lisää integrointivakio:

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$

Vastaus

$$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly