Intégrale de $$$1 - \sec^{2}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$- \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{x}}$$
L’intégrale de $$$\sec^{2}{\left(x \right)}$$$ est $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$ :
$$x - {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = x - {\color{red}{\tan{\left(x \right)}}}$$
Par conséquent,
$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$
Réponse
$$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A