Ολοκλήρωμα του $$$1 - \sec^{2}{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$1 - \sec^{2}{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:

$$- \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{x}}$$

Το ολοκλήρωμα του $$$\sec^{2}{\left(x \right)}$$$ είναι $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$x - {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = x - {\color{red}{\tan{\left(x \right)}}}$$

Επομένως,

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$

Απάντηση

$$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly