$$$1 - \sec^{2}{\left(x \right)}$$$ 的积分

该计算器将求出$$$1 - \sec^{2}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$- \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\sec^{2}{\left(x \right)} d x} + {\color{red}{x}}$$

$$$\sec^{2}{\left(x \right)}$$$ 的积分为 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$x - {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = x - {\color{red}{\tan{\left(x \right)}}}$$

因此,

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$

加上积分常数:

$$\int{\left(1 - \sec^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$

答案

$$$\int \left(1 - \sec^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly