Raja-arvolaskin

Laske raja-arvot vaiheittain

Tämä ilmainen laskin yrittää löytää annetun funktion raja-arvon (kahdenpuoleisen tai yksipuolisen, mukaan lukien vasemmalta ja oikealta) annetussa pisteessä (myös äärettömyydessä) ja näyttää vaiheet.

Raja-arvojen käsittelemiseksi (mukaan lukien epämääräiset muodot) käytetään erilaisia tekniikoita: raja-arvosäännöt, lausekkeiden uudelleenkirjoittaminen ja yksinkertaistaminen, L'Hôpitalin sääntö, nimittäjän rationaalistaminen, luonnollisen logaritmin ottaminen jne.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{x^{2} - 7}{x - 4}$$$

Multiply and divide by $$$x$$$:

$${\color{red}{\lim_{x \to \infty} \frac{x^{2} - 7}{x - 4}}} = {\color{red}{\lim_{x \to \infty} \frac{x \frac{x^{2} - 7}{x}}{x \frac{x - 4}{x}}}}$$

Divide:

$${\color{red}{\lim_{x \to \infty} \frac{x \frac{x^{2} - 7}{x}}{x \frac{x - 4}{x}}}} = {\color{red}{\lim_{x \to \infty} \frac{x - \frac{7}{x}}{1 - \frac{4}{x}}}}$$

The limit of the quotient is the quotient of limits:

$${\color{red}{\lim_{x \to \infty} \frac{x - \frac{7}{x}}{1 - \frac{4}{x}}}} = {\color{red}{\frac{\lim_{x \to \infty}\left(x - \frac{7}{x}\right)}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}}}$$

The limit of a sum/difference is the sum/difference of limits:

$$\frac{{\color{red}{\lim_{x \to \infty}\left(x - \frac{7}{x}\right)}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)} = \frac{{\color{red}{\left(- \lim_{x \to \infty} \frac{7}{x} + \lim_{x \to \infty} x\right)}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=7$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$\frac{\lim_{x \to \infty} x - {\color{red}{\lim_{x \to \infty} \frac{7}{x}}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} x - {\color{red}{\left(7 \lim_{x \to \infty} \frac{1}{x}\right)}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}$$

The limit of a quotient is the quotient of limits:

$$\frac{\lim_{x \to \infty} x - 7 {\color{red}{\lim_{x \to \infty} \frac{1}{x}}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} x - 7 {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}$$

The limit of a constant is equal to the constant:

$$\frac{\lim_{x \to \infty} x - \frac{7 {\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} x - \frac{7 {\color{red}{1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}$$

Constant divided by a very big number equals $$$0$$$:

$$\frac{\lim_{x \to \infty} x - 7 {\color{red}{1 \frac{1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} x - 7 {\color{red}{\left(0\right)}}}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}$$

The function grows without a bound:

$$\lim_{x \to \infty} x = \infty$$

The limit of a sum/difference is the sum/difference of limits:

$$\infty {\color{red}{\lim_{x \to \infty}\left(1 - \frac{4}{x}\right)}}^{-1} = \infty {\color{red}{\left(\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{4}{x}\right)}}^{-1}$$

The limit of a constant is equal to the constant:

$$\infty \left(- \lim_{x \to \infty} \frac{4}{x} + {\color{red}{\lim_{x \to \infty} 1}}\right)^{-1} = \infty \left(- \lim_{x \to \infty} \frac{4}{x} + {\color{red}{1}}\right)^{-1}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$\infty \left(1 - {\color{red}{\lim_{x \to \infty} \frac{4}{x}}}\right)^{-1} = \infty \left(1 - {\color{red}{\left(4 \lim_{x \to \infty} \frac{1}{x}\right)}}\right)^{-1}$$

The limit of a quotient is the quotient of limits:

$$\infty \left(1 - 4 {\color{red}{\lim_{x \to \infty} \frac{1}{x}}}\right)^{-1} = \infty \left(1 - 4 {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x}}}\right)^{-1}$$

The limit of a constant is equal to the constant:

$$\infty \left(1 - \frac{4 {\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x}\right)^{-1} = \infty \left(1 - \frac{4 {\color{red}{1}}}{\lim_{x \to \infty} x}\right)^{-1}$$

Constant divided by a very big number equals $$$0$$$:

$$\infty \left(1 - 4 {\color{red}{1 \frac{1}{\lim_{x \to \infty} x}}}\right)^{-1} = \infty \left(1 - 4 {\color{red}{\left(0\right)}}\right)^{-1}$$

Therefore,

$$\lim_{x \to \infty} \frac{x^{2} - 7}{x - 4} = \infty$$

Answer: $$$\lim_{x \to \infty} \frac{x^{2} - 7}{x - 4}=\infty$$$


Please try a new game Rotatly