Funktion $$$y^{2} = 10 x$$$ implisiittinen derivaatta muuttujan $$$x$$$ suhteen
Syötteesi
Määritä $$$\frac{d}{dx} \left(y^{2} = 10 x\right)$$$.
Ratkaisu
Derivoi erikseen yhtälön molemmat puolet (käsittele $$$y$$$:tä $$$x$$$:n funktiona): $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(10 x\right)$$$.
Derivoi yhtälön vasen puoli.
Funktio $$$y^{2}{\left(x \right)}$$$ on kahden funktion $$$f{\left(u \right)} = u^{2}$$$ ja $$$g{\left(x \right)} = y{\left(x \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(y^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$, kun $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Palaa alkuperäiseen muuttujaan:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = 2 {\color{red}\left(y{\left(x \right)}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Näin ollen, $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = 2 y{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.
Derivoi yhtälön oikea puoli.
Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = 10$$$ ja $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(10 x\right)\right)} = {\color{red}\left(10 \frac{d}{dx} \left(x\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$10 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 10 {\color{red}\left(1\right)}$$Näin ollen, $$$\frac{d}{dx} \left(10 x\right) = 10$$$.
Näin ollen olemme saaneet seuraavan derivaatan suhteen lineaarisen yhtälön: $$$2 y \frac{dy}{dx} = 10$$$.
Ratkaisemalla saadaan, että $$$\frac{dy}{dx} = \frac{5}{y}$$$.
Vastaus
$$$\frac{dy}{dx} = \frac{5}{y}$$$A