Έμμεση παράγωγος της $$$y^{2} = 10 x$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει την πρώτη και τη δεύτερη παράγωγο της εμμέσως ορισμένης συνάρτησης $$$y^{2} = 10 x$$$ ως προς $$$x$$$, με εμφάνιση των βημάτων.
$$$($$$
,
$$$)$$$
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(y^{2} = 10 x\right)$$$.

Λύση

Παραγώγισε χωριστά και τα δύο μέλη της εξίσωσης (θεώρησε την $$$y$$$ ως συνάρτηση της $$$x$$$): $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(10 x\right)$$$.

Υπολογίστε την παράγωγο του αριστερού μέλους της εξίσωσης.

Η συνάρτηση $$$y^{2}{\left(x \right)}$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = u^{2}$$$ και $$$g{\left(x \right)} = y{\left(x \right)}$$$.

Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(y^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ με $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

Επιστροφή στην αρχική μεταβλητή:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = 2 {\color{red}\left(y{\left(x \right)}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

Άρα, $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = 2 y{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.

Παραγώγισε το δεξί μέλος της εξίσωσης.

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 10$$$ και $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(10 x\right)\right)} = {\color{red}\left(10 \frac{d}{dx} \left(x\right)\right)}$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$10 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 10 {\color{red}\left(1\right)}$$

Άρα, $$$\frac{d}{dx} \left(10 x\right) = 10$$$.

Επομένως, καταλήξαμε στην ακόλουθη γραμμική εξίσωση ως προς την παράγωγο: $$$2 y \frac{dy}{dx} = 10$$$.

Λύνοντάς το, λαμβάνουμε ότι $$$\frac{dy}{dx} = \frac{5}{y}$$$.

Απάντηση

$$$\frac{dy}{dx} = \frac{5}{y}$$$A


Please try a new game Rotatly