Derivata implicita di $$$y^{2} = 10 x$$$ rispetto a $$$x$$$

Il calcolatore troverà la prima e la seconda derivata della funzione implicita $$$y^{2} = 10 x$$$ rispetto a $$$x$$$, mostrando i passaggi.
$$$($$$
,
$$$)$$$
Lascia vuoto se non ti serve la derivata in un punto specifico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\frac{d}{dx} \left(y^{2} = 10 x\right)$$$.

Soluzione

Deriva separatamente entrambi i membri dell'equazione (tratta $$$y$$$ come funzione di $$$x$$$): $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(10 x\right)$$$.

Deriva il membro sinistro dell’equazione.

La funzione $$$y^{2}{\left(x \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = u^{2}$$$ e $$$g{\left(x \right)} = y{\left(x \right)}$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(y^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

Applica la regola della potenza $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

Torna alla variabile originale:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = 2 {\color{red}\left(y{\left(x \right)}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

Quindi, $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = 2 y{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.

Deriva il membro destro dell’equazione.

Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 10$$$ e $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(10 x\right)\right)} = {\color{red}\left(10 \frac{d}{dx} \left(x\right)\right)}$$

Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$10 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 10 {\color{red}\left(1\right)}$$

Quindi, $$$\frac{d}{dx} \left(10 x\right) = 10$$$.

Pertanto, abbiamo ottenuto la seguente equazione lineare rispetto alla derivata: $$$2 y \frac{dy}{dx} = 10$$$.

Risolvendo, otteniamo che $$$\frac{dy}{dx} = \frac{5}{y}$$$.

Risposta

$$$\frac{dy}{dx} = \frac{5}{y}$$$A


Please try a new game Rotatly