Derivata implicita di $$$y^{2} = 10 x$$$ rispetto a $$$x$$$
Il tuo input
Trova $$$\frac{d}{dx} \left(y^{2} = 10 x\right)$$$.
Soluzione
Deriva separatamente entrambi i membri dell'equazione (tratta $$$y$$$ come funzione di $$$x$$$): $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(10 x\right)$$$.
Deriva il membro sinistro dell’equazione.
La funzione $$$y^{2}{\left(x \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = u^{2}$$$ e $$$g{\left(x \right)} = y{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(y^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$Applica la regola della potenza $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Torna alla variabile originale:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = 2 {\color{red}\left(y{\left(x \right)}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Quindi, $$$\frac{d}{dx} \left(y^{2}{\left(x \right)}\right) = 2 y{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.
Deriva il membro destro dell’equazione.
Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 10$$$ e $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(10 x\right)\right)} = {\color{red}\left(10 \frac{d}{dx} \left(x\right)\right)}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$10 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 10 {\color{red}\left(1\right)}$$Quindi, $$$\frac{d}{dx} \left(10 x\right) = 10$$$.
Pertanto, abbiamo ottenuto la seguente equazione lineare rispetto alla derivata: $$$2 y \frac{dy}{dx} = 10$$$.
Risolvendo, otteniamo che $$$\frac{dy}{dx} = \frac{5}{y}$$$.
Risposta
$$$\frac{dy}{dx} = \frac{5}{y}$$$A