Integral de $$$y^{2} \ln\left(x^{2}\right)$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$y^{2} \ln\left(x^{2}\right)$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int y^{2} \ln\left(x^{2}\right)\, dx$$$.

Solución

La entrada se reescribe: $$$\int{y^{2} \ln{\left(x^{2} \right)} d x}=\int{2 y^{2} \ln{\left(x \right)} d x}$$$.

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2 y^{2}$$$ y $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:

$${\color{red}{\int{2 y^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 y^{2} \int{\ln{\left(x \right)} d x}\right)}}$$

Para la integral $$$\int{\ln{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=\ln{\left(x \right)}$$$ y $$$\operatorname{dv}=dx$$$.

Entonces $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d x}=x$$$ (los pasos pueden verse »).

La integral se convierte en

$$2 y^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=2 y^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=2 y^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = 2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$

Por lo tanto,

$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 y^{2} \left(x \ln{\left(x \right)} - x\right)$$

Simplificar:

$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)$$

Añade la constante de integración:

$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)+C$$

Respuesta

$$$\int y^{2} \ln\left(x^{2}\right)\, dx = 2 x y^{2} \left(\ln\left(x\right) - 1\right) + C$$$A


Please try a new game Rotatly