Integralen av $$$y^{2} \ln\left(x^{2}\right)$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int y^{2} \ln\left(x^{2}\right)\, dx$$$.
Lösning
Inmatningen skrivs om: $$$\int{y^{2} \ln{\left(x^{2} \right)} d x}=\int{2 y^{2} \ln{\left(x \right)} d x}$$$.
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=2 y^{2}$$$ och $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{2 y^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 y^{2} \int{\ln{\left(x \right)} d x}\right)}}$$
För integralen $$$\int{\ln{\left(x \right)} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\ln{\left(x \right)}$$$ och $$$\operatorname{dv}=dx$$$.
Då gäller $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d x}=x$$$ (stegen kan ses »).
Integralen kan omskrivas som
$$2 y^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=2 y^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=2 y^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:
$$2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = 2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
Alltså,
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 y^{2} \left(x \ln{\left(x \right)} - x\right)$$
Förenkla:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)$$
Lägg till integrationskonstanten:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)+C$$
Svar
$$$\int y^{2} \ln\left(x^{2}\right)\, dx = 2 x y^{2} \left(\ln\left(x\right) - 1\right) + C$$$A