Integral of $$$y^{2} \ln\left(x^{2}\right)$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int y^{2} \ln\left(x^{2}\right)\, dx$$$.
Solution
The input is rewritten: $$$\int{y^{2} \ln{\left(x^{2} \right)} d x}=\int{2 y^{2} \ln{\left(x \right)} d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2 y^{2}$$$ and $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{2 y^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 y^{2} \int{\ln{\left(x \right)} d x}\right)}}$$
For the integral $$$\int{\ln{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\ln{\left(x \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
So,
$$2 y^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=2 y^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=2 y^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = 2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
Therefore,
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 y^{2} \left(x \ln{\left(x \right)} - x\right)$$
Simplify:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)$$
Add the constant of integration:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)+C$$
Answer
$$$\int y^{2} \ln\left(x^{2}\right)\, dx = 2 x y^{2} \left(\ln\left(x\right) - 1\right) + C$$$A