Integrale di $$$y^{2} \ln\left(x^{2}\right)$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int y^{2} \ln\left(x^{2}\right)\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{y^{2} \ln{\left(x^{2} \right)} d x}=\int{2 y^{2} \ln{\left(x \right)} d x}$$$.
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2 y^{2}$$$ e $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{2 y^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 y^{2} \int{\ln{\left(x \right)} d x}\right)}}$$
Per l'integrale $$$\int{\ln{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Siano $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=dx$$$.
Quindi $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (i passaggi si possono vedere »).
Quindi,
$$2 y^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=2 y^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=2 y^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = 2 y^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
Pertanto,
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 y^{2} \left(x \ln{\left(x \right)} - x\right)$$
Semplifica:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)$$
Aggiungi la costante di integrazione:
$$\int{2 y^{2} \ln{\left(x \right)} d x} = 2 x y^{2} \left(\ln{\left(x \right)} - 1\right)+C$$
Risposta
$$$\int y^{2} \ln\left(x^{2}\right)\, dx = 2 x y^{2} \left(\ln\left(x\right) - 1\right) + C$$$A