Integral de $$$e^{- \frac{x^{2}}{2 \sigma^{2}}}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$e^{- \frac{x^{2}}{2 \sigma^{2}}}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int e^{- \frac{x^{2}}{2 \sigma^{2}}}\, dx$$$.

Solución

Sea $$$u=\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}$$$.

Entonces $$$du=\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)^{\prime }dx = \frac{\sqrt{2}}{2 \left|{\sigma}\right|} dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \sqrt{2} \left|{\sigma}\right| du$$$.

La integral puede reescribirse como

$${\color{red}{\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x}}} = {\color{red}{\int{\sqrt{2} e^{- u^{2}} \left|{\sigma}\right| d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\sqrt{2} \left|{\sigma}\right|$$$ y $$$f{\left(u \right)} = e^{- u^{2}}$$$:

$${\color{red}{\int{\sqrt{2} e^{- u^{2}} \left|{\sigma}\right| d u}}} = {\color{red}{\sqrt{2} \left|{\sigma}\right| \int{e^{- u^{2}} d u}}}$$

Esta integral (Función error) no tiene una forma cerrada:

$$\sqrt{2} \left|{\sigma}\right| {\color{red}{\int{e^{- u^{2}} d u}}} = \sqrt{2} \left|{\sigma}\right| {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$

Recordemos que $$$u=\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)}} \right)}}{2}$$

Por lo tanto,

$$\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2}$$

Añade la constante de integración:

$$\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2}+C$$

Respuesta

$$$\int e^{- \frac{x^{2}}{2 \sigma^{2}}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2} + C$$$A


Please try a new game Rotatly